Quantum Stochastic Analysis in Banach space

Bata Krishna Das

Lancaster University

Quantum Probability \& Related Topics
ICM Satellite Conference, JNCASR, Bangalore, August 14-17 2010

1 Introduction
$2 \varepsilon(f)$-adapted vector processes and their Skorohod integrals
3 QS processes in Banach space
4 QS differential equations
5 QS cocycles and their generators

Setup and bullet notation

Setup

- \mathfrak{X} a fixed Banach space.
- $\mathcal{F}=\Gamma\left(L^{2}\left(\mathbb{R}_{+} ; k\right)\right)$ for a fixed Hilbert space k.
- $\mathbb{S} \subset L^{2}\left(\mathbb{R}_{+} ; k\right)$ the set of all k-valued step functions.
- $\mathcal{E}=\operatorname{Lin}\{\varepsilon(f): f \in \mathbb{S}\}$.

Recall that $\mathcal{F}=\mathcal{F}_{[0, t)} \otimes \mathcal{F}_{[t, \infty)}$ and $\nabla_{t} \varepsilon(f)=f(t) \otimes \varepsilon(f) \in \mathrm{k} \otimes \mathcal{F}$.

Setup and bullet notation

Setup

- \mathfrak{X} a fixed Banach space.
- $\mathcal{F}=\Gamma\left(L^{2}\left(\mathbb{R}_{+} ; k\right)\right)$ for a fixed Hilbert space k.
- $\mathbb{S} \subset L^{2}\left(\mathbb{R}_{+} ; k\right)$ the set of all k-valued step functions.
- $\mathcal{E}=\operatorname{Lin}\{\varepsilon(f): f \in \mathbb{S}\}$.

Recall that $\mathcal{F}=\mathcal{F}_{[0, t)} \otimes \mathcal{F}_{[t, \infty)}$ and $\nabla_{t} \varepsilon(f)=f(t) \otimes \varepsilon(f) \in \mathrm{k} \otimes \mathcal{F}$.

Notation

For $P \in B\left(\left\langle\mathcal{F}_{[0, t)}\right| ; \mathcal{A}\right)$ and $Q \in B\left(\left\langle\mathcal{F}_{[t, \infty)}\right| ; \mathcal{A}\right)$,

$$
P \bullet Q:=m \circ(P \widehat{\otimes} Q) \in B(\langle\mathcal{F}| ; \mathcal{A}),
$$

where m is the operator $\mathcal{A} \widehat{\otimes} \rightarrow \mathcal{A}$ induced by multiplication in \mathcal{A}, using $\left\langle\mathcal{F}_{[0, t)}\right| \widehat{\otimes}\left\langle\mathcal{F}_{[t, \infty)}\right|=\left\langle\mathcal{F}_{[0, t)} \otimes \mathcal{F}_{[t, \infty)}\right|=\langle\mathcal{F}|$.

Cl identification

Natural Cl isomorphisms
U, V, W concrete operator spaces
H Hilbert space

- $\mathrm{W} \otimes_{\mathrm{M}}|\mathrm{H}\rangle \cong C B(\langle\mathrm{H}| ; \mathrm{W})$.
- $C B(\mathrm{U} ; C B(\mathrm{~V} ; \mathrm{W})) \cong C B(\mathrm{~V} ; C B(\mathrm{U} ; \mathrm{W}))$.

Cl identification

Natural Cl isomorphisms
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ concrete operator spaces
H Hilbert space

- $\mathrm{W} \otimes_{\mathrm{M}}|\mathrm{H}\rangle \cong C B(\langle\mathrm{H}| ; \mathrm{W})$.
- $C B(\mathrm{U} ; C B(\mathrm{~V} ; \mathrm{W})) \cong C B(\mathrm{~V} ; C B(\mathrm{U} ; \mathrm{W}))$.

Viewpoint on Standard Mapping Processes on A

$$
\left(k_{t}\right)_{t \geq 0} \text { in } C B\left(\mathrm{~A} ; \mathrm{A} \otimes_{\mathrm{M}} B(\mathcal{F})\right)
$$

Cl identification

Natural Cl isomorphisms
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ concrete operator spaces
H Hilbert space

- $\mathrm{W} \otimes_{\mathrm{M}}|\mathrm{H}\rangle \cong C B(\langle\mathrm{H}| ; \mathrm{W})$.
- $C B(\mathrm{U} ; C B(\mathrm{~V} ; \mathrm{W})) \cong C B(\mathrm{~V} ; C B(\mathrm{U} ; \mathrm{W}))$.

Viewpoint on Standard Mapping Processes on A

$$
\left(k_{t}\right)_{t \geq 0} \text { in } C B\left(\mathrm{~A} ; \mathrm{A} \otimes_{\mathrm{M}} B(\mathcal{F})\right) \subset L\left(\mathcal{E} ; C B\left(\mathrm{~A} ; \mathrm{A} \otimes_{\mathrm{M}}|\mathcal{F}\rangle\right)\right)
$$

Cl identification

Natural Cl isomorphisms
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ concrete operator spaces
H Hilbert space

- $\mathrm{W} \otimes_{\mathrm{M}}|\mathrm{H}\rangle \cong C B(\langle\mathrm{H}| ; \mathrm{W})$.
- $C B(\mathrm{U} ; C B(\mathrm{~V} ; \mathrm{W})) \cong C B(\mathrm{~V} ; C B(\mathrm{U} ; \mathrm{W}))$.

Viewpoint on Standard Mapping Processes on A

$$
\begin{aligned}
\left(k_{t}\right)_{t \geq 0} \text { in } C B\left(\mathrm{~A} ; \mathrm{A} \otimes_{\mathrm{M}} B(\mathcal{F})\right) & \subset L\left(\mathcal{E} ; C B\left(\mathrm{~A} ; \mathrm{A} \otimes_{\mathrm{M}}|\mathcal{F}\rangle\right)\right) \\
& =L(\mathcal{E} ; C B(\langle\mathcal{F}| ; C B(\mathrm{~A})))
\end{aligned}
$$

Cl identification

Natural Cl isomorphisms
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ concrete operator spaces
H Hilbert space

- $\mathrm{W} \otimes_{\mathrm{M}}|\mathrm{H}\rangle \cong C B(\langle\mathrm{H}| ; \mathrm{W})$.
- $C B(\mathrm{U} ; C B(\mathrm{~V} ; \mathrm{W})) \cong C B(\mathrm{~V} ; C B(\mathrm{U} ; \mathrm{W}))$.

Viewpoint on Standard Mapping Processes on A

$$
\begin{aligned}
\left(k_{t}\right)_{t \geq 0} \text { in } C B\left(\mathrm{~A} ; \mathrm{A} \otimes_{\mathrm{M}} B(\mathcal{F})\right) & \subset L(\mathcal{E} ; C B(\mathrm{~A} ; \mathrm{A} \otimes \mathrm{M}|\mathcal{F}\rangle)) \\
& =L(\mathcal{E} ; C B(\langle\mathcal{F}| ; C B(\mathrm{~A})))
\end{aligned}
$$

QS Processes in Banach space
Families $\left(m_{t}\right)_{t \geq 0}$ in $L(\mathcal{E} ; B(\langle\mathcal{F}| ; \mathfrak{X}))$.

Vector processes: $\varepsilon(f)$-adaptedness

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Definition

A family $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathcal{F}| ; \mathfrak{X})$ is an $\varepsilon(f)$-adapted vector process in \mathfrak{X} if it satisfies

- $t \mapsto X_{t}(\langle\xi|)$ weakly measurable.
- $X_{t}=X(t) \widehat{\otimes} R\left(\left|\varepsilon\left(f_{[t, \infty)}\right)\right\rangle\right)$, where $X(t) \in B\left(\left\langle\mathcal{F}_{[0, t)}\right| ; \mathfrak{X}\right)$.

Vector processes: $\varepsilon(f)$-adaptedness

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Definition

A family $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathcal{F}| ; \mathfrak{X})$ is an $\varepsilon(f)$-adapted vector process in \mathfrak{X} if it satisfies

- $t \mapsto X_{t}(\langle\xi|)$ weakly measurable.
- $X_{t}=X(t) \widehat{\otimes} R\left(\left|\varepsilon\left(f_{[t, \infty)}\right)\right\rangle\right)$, where $X(t) \in B\left(\left\langle\mathcal{F}_{[0, t)}\right| ; \mathfrak{X}\right)$.

Proposition

For a family $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathcal{F}| ; \mathfrak{X})$, TFAE:

1. X is an $\varepsilon(f)$-adapted vector process in \mathfrak{X}.
2. $\forall_{\omega \in \mathfrak{X}^{*}} X^{\omega}:=\left(X_{t}^{\omega}=\omega \circ X_{t}\right)_{t \geq 0}$ defines a "standard" $\varepsilon(f)$-adapted vector process in $\left\langle\left.\mathcal{F}\right|^{*}=\mathcal{F}\right.$.

Vector processes: Skorohod integration

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.
Definition
An $\varepsilon(f)$-adapted vector process $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathrm{k} \otimes \mathcal{F}| ; \mathfrak{X})$ is Skorohod-integrable if

Vector processes: Skorohod integration

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Definition

An $\varepsilon(f)$-adapted vector process $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathrm{k} \otimes \mathcal{F}| ; \mathfrak{X})$ is Skorohod-integrable if

- $\forall_{\varepsilon \in \mathcal{E}} \quad t \mapsto X_{t}\left(\left\langle\nabla_{t} \varepsilon\right|\right)$ locally Pettis-integrable.

Vector processes: Skorohod integration

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Definition

An $\varepsilon(f)$-adapted vector process $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathrm{k} \otimes \mathcal{F}| ; \mathfrak{X})$ is Skorohod-integrable if

- $\forall_{\varepsilon \in \mathcal{E}} \quad t \mapsto X_{t}\left(\left\langle\nabla_{t} \varepsilon\right|\right)$ locally Pettis-integrable.
- $\forall_{t \geq 0} \sup _{\omega \in \text { Ball }\left[\mathcal{X}^{*}\right]} \int_{0}^{t}\left\|\omega \circ X_{s}\right\|^{2} \mathrm{~d} s<\infty$.

Vector processes: Skorohod integration

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Definition

An $\varepsilon(f)$-adapted vector process $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathrm{k} \otimes \mathcal{F}| ; \mathfrak{X})$ is Skorohod-integrable if

- $\forall_{\varepsilon \in \mathcal{E}} \quad t \mapsto X_{t}\left(\left\langle\nabla_{t} \varepsilon\right|\right)$ locally Pettis-integrable.
- $\forall_{t \geq 0} \sup _{\omega \in \text { Ball }}\left[\mathfrak{X}^{*}\right] \int_{0}^{t}\left\|\omega \circ X_{s}\right\|^{2} \mathrm{~d} s<\infty$.

Now define $\mathcal{S}_{t}^{\mathfrak{X}} X$ in $L(\langle\mathcal{E}| ; \mathfrak{X})$ by duality:

$$
\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)(\langle\varepsilon|):=\int_{0}^{t} X_{s}\left(\left\langle\nabla_{s}(\varepsilon)\right|\right) \mathrm{d} s
$$

Vector processes: Skorohod integration

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Definition

An $\varepsilon(f)$-adapted vector process $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\langle\mathrm{k} \otimes \mathcal{F}| ; \mathfrak{X})$ is Skorohod-integrable if

- $\forall_{\varepsilon \in \mathcal{E}} \quad t \mapsto X_{t}\left(\left\langle\nabla_{t} \varepsilon\right|\right)$ locally Pettis-integrable.
- $\forall_{t \geq 0} \sup _{\omega \in \text { Ball }\left[\mathfrak{X}^{*}\right]} \int_{0}^{t}\left\|\omega \circ X_{s}\right\|^{2} \mathrm{~d} s<\infty$.

Now define $\mathcal{S}_{t}^{\mathfrak{X}} X$ in $L(\langle\mathcal{E}| ; \mathfrak{X})$ by duality:

$$
\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)(\langle\varepsilon|):=\int_{0}^{t} X_{s}\left(\left\langle\nabla_{s}(\varepsilon)\right|\right) \mathrm{d} s
$$

Key fact

$$
\omega\left(\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)(\langle\varepsilon|)\right)=\left\langle\varepsilon, \mathcal{S}_{t}\left(X^{\omega}\right)\right\rangle \quad\left(\omega \in \mathfrak{X}^{*}\right) .
$$

Vector processes: $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t>0}$ as $\varepsilon(f)$-adapted vector process

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Properties

Let $X=\left(X_{t}\right)_{t \geq 0}$ be a Skorohod-integrable $\varepsilon(f)$-adapted vector process. Then

1. $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t \geq 0}$ defines an $\varepsilon(f)$-adapted vector process in \mathfrak{X}.

Vector processes: $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t>0}$ as $\varepsilon(f)$-adapted vector process

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Properties

Let $X=\left(X_{t}\right)_{t \geq 0}$ be a Skorohod-integrable $\varepsilon(f)$-adapted vector process. Then

1. $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t \geq 0}$ defines an $\varepsilon(f)$-adapted vector process in \mathfrak{X}.
2. $\left\|\mathcal{S}_{t}^{\mathfrak{X}} X-\mathcal{S}_{r}^{\mathfrak{X}} X\right\| \leq C_{f,[r, t)} \sup _{\omega \in \operatorname{Ball}\left[\mathfrak{X}^{*}\right]}\left(\int_{r}^{t}\left\|\omega \circ X_{s}\right\|^{2} \mathrm{~d} s\right)^{1 / 2}$.

Vector processes: $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t>0}$ as $\varepsilon(f)$-adapted vector process

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Properties

Let $X=\left(X_{t}\right)_{t \geq 0}$ be a Skorohod-integrable $\varepsilon(f)$-adapted vector process. Then

1. $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t \geq 0}$ defines an $\varepsilon(f)$-adapted vector process in \mathfrak{X}.
2. $\left\|\mathcal{S}_{t}^{\mathfrak{X}} X-\mathcal{S}_{r}^{\mathfrak{X}} X\right\| \leq C_{f,[r, t)} \sup _{\omega \in \text { Ball }\left[\mathfrak{X}^{*}\right]}\left(\int_{r}^{t}\left\|\omega \circ X_{s}\right\|^{2} \mathrm{~d} s\right)^{1 / 2}$.
3. $\forall_{\omega \in \mathfrak{X}^{*}} \omega \circ\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)=\mathcal{S}_{t}\left(X^{\omega}\right)$.

Vector processes: $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t>0}$ as $\varepsilon(f)$-adapted vector process

Let $f \in L^{2}\left(\mathbb{R}_{+} ; k\right)$.

Properties

Let $X=\left(X_{t}\right)_{t \geq 0}$ be a Skorohod-integrable $\varepsilon(f)$-adapted vector process. Then

1. $\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)_{t \geq 0}$ defines an $\varepsilon(f)$-adapted vector process in \mathfrak{X}.
2. $\left\|\mathcal{S}_{t}^{\mathfrak{X}} X-\mathcal{S}_{r}^{\mathfrak{X}} X\right\| \leq C_{f,[r, t)} \sup _{\omega \in \text { Ball }\left[\mathfrak{X}^{*}\right]}\left(\int_{r}^{t}\left\|\omega \circ X_{s}\right\|^{2} \mathrm{~d} s\right)^{1 / 2}$.
3. $\forall_{\omega \in \mathfrak{X}^{*}} \omega \circ\left(\mathcal{S}_{t}^{\mathfrak{X}} X\right)=\mathcal{S}_{t}\left(X^{\omega}\right)$.
4. If X is locally bounded then $t \mapsto \mathcal{S}_{t}^{\mathfrak{X}} X$ is locally Hölder 1/2-continuous.

QS process in \mathfrak{X}

Definition

A family $m=\left(m_{t}\right)_{t \geq 0}$ in $L(\mathcal{E} ; B(\langle\mathcal{F}| ; \mathfrak{X}))$ is a $Q S$ process in \mathfrak{X} if it satisfies

QS process in \mathfrak{X}

Definition

A family $m=\left(m_{t}\right)_{t \geq 0}$ in $L(\mathcal{E} ; B(\langle\mathcal{F}| ; \mathfrak{X}))$ is a $Q S$ process in \mathfrak{X} if it satisfies

QS process in \mathfrak{X}

Definition

A family $m=\left(m_{t}\right)_{t \geq 0}$ in $L(\mathcal{E} ; B(\langle\mathcal{F}| ; \mathfrak{X}))$ is a $Q S$ process in \mathfrak{X} if it satisfies

2. $m_{t, \varepsilon(f)}=m^{\varepsilon(f)}(t) \widehat{\otimes} R\left(\left|\varepsilon\left(f_{[t, \infty)}\right)\right\rangle\right)$,
where $m^{\varepsilon(f)}(t):=\left.m_{t, \varepsilon\left(f_{[0, t)}\right)}\right|_{\left\langle\mathcal{F}_{[0, t)}\right|}$.

QS process in \mathfrak{X}

Definition

A family $m=\left(m_{t}\right)_{t \geq 0}$ in $L(\mathcal{E} ; B(\langle\mathcal{F}| ; \mathfrak{X}))$ is a $Q S$ process in \mathfrak{X} if it satisfies

1. $\forall_{\varepsilon \in \mathcal{E}, \omega \in \mathcal{X}^{*}, \xi \in \mathcal{F}} \quad t \mapsto \omega\left(m_{t, \varepsilon}(\langle\xi|)\right)$ is measurable.
2. $m_{t, \varepsilon(f)}=m^{\varepsilon(f)}(t) \widehat{\otimes} R\left(\left|\varepsilon\left(f_{[t, \infty)}\right)\right\rangle\right)$, where $m^{\varepsilon(f)}(t):=\left.m_{t, \varepsilon\left(f_{0, t)}\right)}\right|_{\left\langle\mathcal{F}_{0, t)}\right|}$.

Example (QS Process in $B(\mathrm{~h})$)

For a "standard" $Q S$ process $X=\left(X_{t}\right)_{t \geq 0}$ in $B(\mathrm{~h} \otimes \mathcal{F})$.

$$
m_{t, \varepsilon}(\langle\xi|):=\left(I_{\mathrm{h}} \otimes\langle\xi|\right) X_{t}\left(I_{\mathrm{h}} \otimes|\varepsilon\rangle\right)
$$

defines a QS process in our (wider) sense.

QS cocycles in \mathcal{A}

Let \mathcal{A} be an unital Banach algebra.
Definition
A $Q S$ process m in \mathcal{A} is a $Q S$ cocycle if it satisfies

QS cocycles in \mathcal{A}

Let \mathcal{A} be an unital Banach algebra.

Definition

A $Q S$ process m in \mathcal{A} is a $Q S$ cocycle if it satisfies

$$
\begin{aligned}
& m_{r+t, \varepsilon(f)}=m^{\varepsilon(f)}(r) \bullet \sigma_{r}\left(m_{t, \varepsilon\left(S_{r}^{*}\left(f_{[r, \infty)}\right)\right)}\right) \\
& m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}}
\end{aligned}
$$

QS cocycles in \mathcal{A}

Let \mathcal{A} be an unital Banach algebra.

Definition

A $Q S$ process m in \mathcal{A} is a $Q S$ cocycle if it satisfies

$$
\begin{aligned}
& m_{r+t, \varepsilon(f)}=m^{\varepsilon(f)}(r) \bullet \sigma_{r}\left(m_{t, \varepsilon\left(S_{r}^{*}\left(f_{[r, \infty)}\right)\right)}\right) \\
& m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}}
\end{aligned}
$$

- Associated semigroups $\left\{P^{c, d}: c, d \in \mathrm{k}\right\}$ of m :

$$
\left.P_{t}^{c, d}:=m_{t, \varepsilon\left(d_{[0, t)}\right)}\right)\left(\left\langle\varepsilon\left(c_{[0, t)}\right)\right|\right) .
$$

QS cocycles in \mathcal{A}

Let \mathcal{A} be an unital Banach algebra.

Definition

A $Q S$ process m in \mathcal{A} is a $Q S$ cocycle if it satisfies

$$
\begin{aligned}
& m_{r+t, \varepsilon(f)}=m^{\varepsilon(f)}(r) \bullet \sigma_{r}\left(m_{t, \varepsilon\left(S_{r}^{*}\left(f_{[r, \infty)}\right)\right)}\right), \\
& m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}} .
\end{aligned}
$$

- Associated semigroups $\left\{P^{c, d}: c, d \in \mathrm{k}\right\}$ of m :

$$
\left.P_{t}^{c, d}:=m_{t, \varepsilon\left(d_{[0, t)}\right)}\right)\left(\left\langle\varepsilon\left(c_{[0, t)}\right)\right|\right) .
$$

- m is Markov-regular if each $P^{c, d}$ is norm continuous.

QS cocycles in \mathcal{A}

Let \mathcal{A} be an unital Banach algebra.

Definition

$A Q S$ process m in \mathcal{A} is a $Q S$ cocycle if it satisfies

$$
\begin{aligned}
& m_{r+t, \varepsilon(f)}=m^{\varepsilon(f)}(r) \bullet \sigma_{r}\left(m_{t, \varepsilon\left(S_{r}^{*}\left(f_{[r, \infty)}\right)\right)}\right) \\
& m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}}
\end{aligned}
$$

- Associated semigroups $\left\{P^{c, d}: c, d \in \mathrm{k}\right\}$ of m :

$$
\left.P_{t}^{c, d}:=m_{t, \varepsilon\left(d_{[0, t)}\right)}\right)\left(\left\langle\varepsilon\left(c_{[0, t)}\right)\right|\right) .
$$

- m is Markov-regular if each $P^{c, d}$ is norm continuous.
- m is adjointable if there is a QS cocycle m^{\dagger} in \mathcal{A}^{\dagger} satisfying

$$
m_{t, \varepsilon}^{\dagger}\left(\left\langle\varepsilon^{\prime}\right|\right)=\left(m_{t, \varepsilon^{\prime}}(\langle\varepsilon|)\right)^{\dagger} .
$$

QSDE

Set $\widehat{k}=\mathbb{C} \oplus k$

Theorem

For $\gamma \in L(\widehat{\mathrm{k}} ; B(\langle\widehat{\mathrm{k}}| ; \mathcal{A}))$, the $Q S D E$

$$
\mathrm{d} m_{t}=m_{t} \cdot \gamma \mathrm{~d} \Lambda(t), \quad m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}}
$$

has a unique solution, denoted m^{γ}. It is given by a form of Picard iteration:

$$
m_{t, \varepsilon}^{\gamma}=\sum_{n \geq 0} \Lambda_{t}^{(n)}\left(\gamma^{\bullet n}\right)_{\varepsilon} \in B(\langle\mathcal{F}| ; \mathcal{A}) .
$$

QSDE

Set $\widehat{k}=\mathbb{C} \oplus k$

Theorem

For $\gamma \in L(\widehat{\mathrm{k}} ; B(\langle\widehat{\mathrm{k}}| ; \mathcal{A}))$, the $Q S D E$

$$
\mathrm{d} m_{t}=m_{t} \cdot \gamma \mathrm{~d} \Lambda(t), \quad m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}}
$$

has a unique solution, denoted m^{γ}. It is given by a form of Picard iteration:

$$
m_{t, \varepsilon}^{\gamma}=\sum_{n \geq 0} \Lambda_{t}^{(n)}\left(\gamma^{\bullet n}\right)_{\varepsilon} \in B(\langle\mathcal{F}| ; \mathcal{A}) .
$$

Properties:

1. $t \mapsto m_{t, \varepsilon}^{\gamma}$ is locally Hölder 1/2-continuous.

QSDE

Set $\hat{k}=\mathbb{C} \oplus k$

Theorem

For $\gamma \in L(\widehat{\mathrm{k}} ; B(\langle\widehat{\mathrm{k}}| ; \mathcal{A}))$, the $Q S D E$

$$
\mathrm{d} m_{t}=m_{t} \cdot \gamma \mathrm{~d} \Lambda(t), \quad m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}}
$$

has a unique solution, denoted m^{γ}. It is given by a form of Picard iteration:

$$
m_{t, \varepsilon}^{\gamma}=\sum_{n \geq 0} \Lambda_{t}^{(n)}\left(\gamma^{\bullet n}\right)_{\varepsilon} \in B(\langle\mathcal{F}| ; \mathcal{A}) .
$$

Properties:

1. $t \mapsto m_{t, \varepsilon}^{\gamma}$ is locally Hölder 1/2-continuous.
2. m^{γ} is a Markov-regular $Q S$ cocycle.

QSDE

Set $\hat{k}=\mathbb{C} \oplus k$

Theorem

For $\gamma \in L(\widehat{\mathrm{k}} ; B(\widehat{\mathrm{k}} \mid ; \mathcal{A}))$, the $Q S D E$

$$
\mathrm{d} m_{t}=m_{t} \cdot \gamma \mathrm{~d} \Lambda(t), \quad m_{0, \varepsilon}(\langle\xi|)=\langle\xi, \varepsilon\rangle 1_{\mathcal{A}}
$$

has a unique solution, denoted m^{γ}. It is given by a form of Picard iteration:

$$
m_{t, \varepsilon}^{\gamma}=\sum_{n \geq 0} \Lambda_{t}^{(n)}\left(\gamma^{\bullet n}\right)_{\varepsilon} \in B(\langle\mathcal{F}| ; \mathcal{A})
$$

Properties:

1. $t \mapsto m_{t, \varepsilon}^{\gamma}$ is locally Hölder 1/2-continuous.
2. m^{γ} is a Markov-regular QS cocycle.
3. If γ is adjointable then m^{γ} is also adjointable and

$$
\left(m^{\gamma}\right)^{\dagger}=m^{\gamma^{\dagger}}
$$

Stochastic generators for QS cocycles

Theorem

Let m be an adjointable, Markov-regular QS cocycle in \mathcal{A} such that $t \mapsto m_{t, \varepsilon}$ and $t \mapsto m_{t, \varepsilon}^{\dagger}$ are locally Hölder 1/2-continuous.

Stochastic generators for QS cocycles

Theorem

Let m be an adjointable, Markov-regular QS cocycle in \mathcal{A} such that $t \mapsto m_{t, \varepsilon}$ and $t \mapsto m_{t, \varepsilon}^{\dagger}$ are locally Hölder 1/2-continuous.

Then there is $\gamma \in L(\widehat{k} ; B(\widehat{k} \mid ; \mathcal{A}))$ such that

$$
m=m^{\gamma}
$$

Idea of the Proof

1. For fixed $w \in \mathbb{C}, d \in \mathrm{k}$, define

$$
\gamma_{1}\binom{w}{d} \in B(\langle\mathbb{C}| ; \mathcal{A}) \text { and } \gamma_{2}\binom{w}{d} \in B(\langle\mathrm{k}| ; \mathcal{A}) \text { by }
$$

Idea of the Proof

1. For fixed $w \in \mathbb{C}, d \in \mathrm{k}$, define

$$
\begin{aligned}
& \gamma_{1}\binom{w}{d} \in B(\langle\mathbb{C}| ; \mathcal{A}) \text { and } \gamma_{2}\binom{w}{d} \in B(\langle\mathrm{k}| ; \mathcal{A}) \text { by } \\
& \gamma_{1}\binom{w}{d}:\langle z| \mapsto \mapsto\left(\beta_{0, d}+(w-1) \beta_{0,0}\right), \text { and } \\
& \gamma_{2}\binom{w}{d}:=\text { st. } \lim _{t \rightarrow 0} \frac{1}{\sqrt{t}}\left(m_{t, \varepsilon\left(d_{[0, t)}\right)}-m_{0, \varepsilon\left(d_{[0, t)}\right)}\right) \circ E_{t} \\
&+(w-1) \text { st. } \lim _{t \rightarrow 0} \frac{1}{\sqrt{t}}\left(m_{t, \varepsilon(0)}-m_{0, \varepsilon(0)}\right) \circ E_{t}
\end{aligned}
$$

where E_{t} is the isometry $\langle c| \in\langle\mathrm{k}| \mapsto \frac{1}{\sqrt{t}}\left\langle c_{[0, t)}\right| \in\langle\mathcal{F}|$.
2. Set

$$
\gamma(\eta)=\left[\gamma_{1}(\eta) \quad \gamma_{2}(\eta)\right] \in B(\langle\widehat{\mathrm{k}}| ; \mathcal{A}) \quad(\eta \in \widehat{\mathrm{k}})
$$

Idea of the Proof

1. For fixed $w \in \mathbb{C}, d \in \mathrm{k}$, define

$$
\begin{aligned}
& \gamma_{1}\binom{w}{d} \in B(\langle\mathbb{C}| ; \mathcal{A}) \text { and } \gamma_{2}\binom{w}{d} \in B(\langle\mathrm{k}| ; \mathcal{A}) \text { by } \\
& \gamma_{1}\binom{w}{d}:\langle z| \mapsto \mapsto\left(\beta_{0, d}+(w-1) \beta_{0,0}\right), \text { and } \\
& \gamma_{2}\binom{w}{d}:=\text { st. } \lim _{t \rightarrow 0} \frac{1}{\sqrt{t}}\left(m_{t, \varepsilon\left(d_{[0, t)}\right)}-m_{0, \varepsilon\left(d_{[0, t)}\right)}\right) \circ E_{t} \\
&+(w-1) \text { st. } \lim _{t \rightarrow 0} \frac{1}{\sqrt{t}}\left(m_{t, \varepsilon(0)}-m_{0, \varepsilon(0)}\right) \circ E_{t}
\end{aligned}
$$

where E_{t} is the isometry $\langle c| \in\langle\mathrm{k}| \mapsto \frac{1}{\sqrt{t}}\left\langle c_{[0, t)}\right| \in\langle\mathcal{F}|$.

Idea of the Proof

1. For fixed $w \in \mathbb{C}, d \in \mathrm{k}$, define

$$
\begin{aligned}
& \gamma_{1}\binom{w}{d} \in B(\langle\mathbb{C}| ; \mathcal{A}) \text { and } \gamma_{2}\binom{w}{d} \in B(\langle\mathrm{k}| ; \mathcal{A}) \text { by } \\
& \gamma_{1}\binom{w}{d}:\langle z| \mapsto \bar{z}\left(\beta_{0, d}+(w-1) \beta_{0,0}\right), \text { and } \\
& \gamma_{2}\binom{w}{d}:=\text { st. } \lim _{t \rightarrow 0} \frac{1}{\sqrt{t}}\left(m_{t, \varepsilon\left(d_{[0, t)}\right)}-m_{0, \varepsilon\left(d_{[0, t)}\right)}\right) \circ E_{t} \\
& \\
& \quad+(w-1) \text { st. } \lim _{t \rightarrow 0} \frac{1}{\sqrt{t}}\left(m_{t, \varepsilon(0)}-m_{0, \varepsilon(0)}\right) \circ E_{t}
\end{aligned}
$$

where E_{t} is the isometry $\langle c| \in\langle\mathrm{k}| \mapsto \frac{1}{\sqrt{t}}\left\langle c_{[0, t)}\right| \in\langle\mathcal{F}|$.
2. Set

$$
\gamma(\eta)=\left[\gamma_{1}(\eta) \quad \gamma_{2}(\eta)\right] \in B(\langle\widehat{\mathbf{k}}| ; \mathcal{A}) \quad(\eta \in \widehat{\mathrm{k}})
$$

國 R．L．Hudson and K．R．Parthasarathy，Quantum Itô＇s formula and stochastic evolution，Comm．Math．Phys． 93 （1984）no．3， 301－323．
圊 J．M．Lindsay and A．G．Skalski，Quantum stochastic convolution cocycles II，Comm．Math．Phys． 280 （2008），no．3，575－610．
囯－On quantum stochastic differential equations，J．Math． Anal．Appl． 330 （2007），1093－1114．
國 J．M．Lindsay and S．J．Wills，Quantum stochastic operator cocycles via associated semigroups，Math．Proc．Cambridge Philos．Soc． 142 （2007），no．3，535－556．

